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Abstract. The effects of basis set variations on resonance
attributes are investigated using systematically augment-
ed basis sets by correlating the resulting changes in
resonance energy and width with the alterations induced
in the radial probability density profile of the resonant
orbital. Applications to *P Be~ and 2P Mg~ shape
resonances reveal that basis sets capable of describing
both electron density accumulation near the target
nucleus to facilitate resonance formation and sufficiently
large electron density away from the target nucleus to
provide for its decay are necessary for effective charac-
terization of these resonances. A comparison of radial
probability density profiles from the bivariational self-
consistent field, the second-order, the diagonal two
particle-one hole Tamm-Dancoff approximation and
quasiparticle decouplings reveals that relaxation effects
dominate in resonance formation.
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1 Introduction

The electron propagator technique [1, 2] has emerged as
a potent tool for the correlated treatment of electronic
structure [3-7]. The complex scaled [8, 9] electron
propagator [10-12], where all the electronic coordinates
of the Hamiltonian have been scaled by a complex scale
factor (n = ae™) has emerged as an effective technique
for investigation of shape resonances in electron—atom
and electron—-molecule scattering [13—15]. The biorthog-
onal dilated electron propagator [14] is based on an
underlying bivariational self-consistent-field (SCF)
method [16, 17] which takes full cognizance of the
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non-Hermiticity of the complex scaled Hamiltonian,
while preserving the simple structure of the real electron
propagator formalism. Different decouplings of the
dilated electron propagator, such as the zeroth-order
(%), the second-order (X?) and the diagonal two
particle-one hole Tamm-Dancoff (Z?P"TPA) approxi-
mations and the corresponding quasiparticle decou-
plings have been implemented and offer effective de-
scription of energies and widths of shape resonances of
atomic and molecular systems [14, 15].

It has become amply clear from these investigations
[14-27] that basis set effects are critical in the charac-
terization of resonances, since even slight variations in
basis sets can lead to widely different results [18, 20, 23],
and greater proximity to experimental values has often
been obtained from smaller basis sets [18, 20, 24]. The
varied applications of the dilated electron propagator
have established its usefulness but no attempt has been
made to systematically explore the role of basis set
variations on resonance attributes.

It is our purpose in this article to investigate the basis
set dependence of resonance energies and widths of the
prototypical 2P shape resonances in e-Be and e-Mg
scattering using the biorthogonal dilated electron prop-
agator method. Towards this end, we examine the reso-
nant attributes of the P Be~ and P Mg~ shape
resonances calculated from the second-order decoupling
of the dilated electron propagator using systematically
constructed basis sets for Be and Mg. A correlation be-
tween the radial probability density profile of the
resonant Feynman-Dyson amplitudes (FDAs) from
different primitive bases and their impact on the reso-
nance attributes is the chosen instrument for eliciting the
role of basis set effects in the characterization of reso-
nances. The results from different decouplings employing
saturated basis sets for both the P Be™ and °P Mg~
shape resonances are analyzed to decipher the role of
relaxation and correlation in the characterization of these
resonances.

The rest of the article is organised as follows.
The main equations are collected in Sect. 2. The de-
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tailed investigation of basis set effects on the resonant
attributes in e-Be and e-Mg scattering is presented in
Sect. 3 and a summary of the salient results concludes
this article.

2 Method

The electron propagator technique [4, 6] is well established and the
Dyson equation for the dilated biorthogonal matrix electron
propagator, G(n, E), may be expressed as [14]

G'(n,E) =Gy (n,E) = X(n,E) | (1)

where Gy (1, E) is the zeroth-order propagator for the uncorrelated
electron motion, here chosen as given by the bivariational SCF
approximation [17]. The self-energy matrix, X(#, E), incorporates
the relaxation and correlation effects.

Solution of the bivariational SCF equations for the N-electron
ground state yields a set of occupied and unoccupied spm orbitals.
In terms of these spin orbitals, the matrix elements of G0 (n,E) are

Gy (n,E)] ;= (E = e)dy S

where ¢; is the orbital energy corresponding to the ith spin orbital.
Through the second order of electron interaction, the elements of
the self-energy matrix are [14]

(ik|| Im) (Im||jk)

];mN E“Fek*El*an) ' (3)
where
Nigm = ((nie) — (n1)) ({mie) — () 4)

with (n;) being the occupation number (0 or 1) for the kth spin
orbital and the anti-symmetric two-electron integral

(ijlkty = ! / VW, = P fralde (DY (D dry - (5)

The lack of complex conjugation stems from the biorthogonal sets
of orbitals resulting from bivariational SCF being the complex
conjugate of each other [12, 17]. For the diagonal 2ph-TDA [4, 6]
decoupling of the dilated electron propagator [18]

(k|| m) {Lm||jk)

5.2ph- TDA Nt
v nE 2];'1 (E+e—e—e€n)—A" )
where
A = Kml|mI)(1 = () — (n1))
: (7

— (o [fm) ((nx) — (nm)) — CkL{[ED) ((ni) = (ni)) -

In terms of the spin orbitals from the bivariational SCF procedure,
combining Egs. (1) and (2) we may write the matrix electron
propagator as

G '(n,E) = E1 — e(n) — X(n,E) = E1 — L(n, E) ®)
or in operator form
G(W,E) = [E - L(%E)]_l ’ (9)

whereby in terms of the eigenfunctions and eigenvalues of L(1, E)

L(n, E)1u(n, E) = Ea(n, E) 1, (0, E) - (10)
The spectral representation of G is given by

]Zun 7)1 -

and the eigenvalues of L, therefore, represent the poles of G.
Accordingly, the dilated electron propagator calculations proceed
by iterative diagonalization

1) {2 (1)

G(n,E)=[E—L(n,E = 6,0 E)

L(naE)Xn(nvE) = gﬂ("lvE)Xn(naE) ’ (12)
with
L(n, E) = e(n) + X(n, E) , (13)

where €(#) is the diagonal matrix of orbital energies and X is the
self-energy matrix. The propagator pole, &, is obtained by repeated
diagonalizations such that one of the eigenvalues &,(n,E) of
L(n,E) fulfills the condition E = &,(n,E) [14]. These &,(n,E)
represent the poles of the dilated electron propagator, G(n,E).
From among these poles, the resonant pole &:(n,E) and the
corresponding eigenvector (FDA) y,(n,E) are selected as per the
prescription of the complex scaling theorems [8, 9], whereby those
roots in the continua which are invariant to changes in the complex
scaling parameter, #, are to be associated with resonances. In a
limited basis set calculation, instead of absolute stability one finds
quasistability where the 6 trajectory displays kinks, cusps, loops or
inflections which indicate the proximity of a stationary point [28].
In this work the resonance attributes were extracted from the value
at the kink in the 0 trajectories (06, /00 = 0). The real part of the
resonant pole furnishes the energy and the imaginary part the half
width of the resonance.

The quasiparticle approximation [29] for a dilated electron
propagator [24] results from a diagonal approximation to the self-
energy matrix, with poles of the dilated electron propagator given
by

E(n) =e¢+Zi(n,E) , (14)

which are determined iteratively beginning with £ = ¢; and X; may
correspond to any pertubatlve (£2) or renormalized decoupling
such as the diagonal 2™

In the bivariationally obtained biorthogonal orbital basis {y;},
the FDA y, is a linear combination

Xn(?):ZCinl//i(l_;) ’ (15)

where the mixing of the canonical orbitals allows the incorporation
of relaxation effects and nondiagonal correlation effects. In the
zeroth-order (Z 0) and the quasiparticle approximations (diag-
onal X), there is no mixing. The difference between the perturbative
second-order (£°) or renormalized diagonal 2ph-TDA (E*P*TPA)
decouplings manifests itself through differences between the mixing
coefficients, Cj,, from these approximations.

3 Results and discussion

The P Be™ [11, 18, 30-34] and the 2PMg~ [18, 30, 31,
36-39] shape resonances have been popular prototypical
systems for testing new schemes for the treatment of
electron-scattering resonances. Characterization of res-
onances using complex scaling (7 = «e’) requires that,
once uncovered, resonant poles be stable with respect to
further variations in the complex scaling parameter [8,
9]. In a limited basis set calculation, only quasistability
in a narrow range of o and 0 values is seen [28] and the
resonances are identified by plotting the complex poles
as a function of 0 (0 trajectory) and associating the value
of the resonant pole at the inflection point (0op) in the
quasistable region of this 6 trajectory with the resonance
energy (the real part) and half width (the imaginary
part). Due to the need to ascertain stability with respect
to variations in #, the dilated electron propagator
calculations require 6§ and « trajectories necessitating
sampling of about 20-25 0 values and 3-5 o values,
making them computationally demanding. The previous
dilated electron propagator calculations have therefore
employed modest basis sets (10s6p) [11, 18], (5s7p) [11]



for Be™ and (4s7p, 4s8p, 4s9p and 4s10p) [18, 20, 21] for
Mg~ shape resonances. In this work we chose to study
the Be™ resonance by using the largest (14s16p) basis set
[32] utilized for this system because this basis set gives a
good coverage in the s space and the p space. The last
five s-type functions differ by a factor of 2 in their
exponents, while all the p-type functions differ by a
factor of 2.26. The most diffuse s function has an
exponent of 0.0032 and the most diffuse p function
has an exponent of 0.0000334. Inadvertently, the p
exponents used here are given by 15.46/2.26" for
n=1,...,16, whereas in Ref. [32] n=0,...,15. We
checked our results with the n =0, ..., 15 p basis set as
well and found the difference between results from the
14s16p basis employed in this work and that used in Ref.
[32] to be negligible. As a crude test for effects of
d orbitals we augmented the basis set with a typical
d polarization function [x(d) = 4.0] as well [40].

The ?P Mg~ shape resonance is well characterized
experimentally [37] and the dilated electron propagator
results from the 4s9p basis [18] are almost identical to
those observed experimentally. For the 2P Mg~ shape
resonance we therefore utilized this 4s9p basis with
systematic augmentation with additional s- and p-type
functions. In the following subsections we present our
results for the P Be~ and 2P Mg~ shape resonances.
Among the many decouplings employed in the previous
dilated electron propagator calculations, the second-
order decoupling has provided balanced results [14] and
our investigation of basis set adequacy is through the use
of this decoupling. We do not expect computationally
more expensive correlation methods to exhibit signifi-
cant new basis set requirements to describe the reso-
nance; however, a more advanced method may require
additional basis functions to describe the reference wave
function.

The smallest primitive basis set with results close to
the biggest basis set was used in resonance calculations
employing other decouplings. The difference between
resonance attributes from different decouplings and the
correlation of these differences with those mirrored by
the radial density profiles are used to decipher the role of
correlation and relaxation effects in the formation and
decay of resonances.

3.1 The °P Be~ shape resonance

Resonant 0 trajectories from the second-order decou-
pling employing the 14s16pld and other basis sets
obtained from it by systematic deletion of most diffuse s,
p and d functions are presented in Fig. 1. Resonance
energies and widths extracted from the quasistable
portion of the corresponding trajectories are collected
in Table 1. The 14s16pld is a saturated basis set for our
calculations since results from the 14sllp — 14sl6pld
basis sets are almost identical. The resonance energy and
the width of the P Be™ shape resonance from these
14s11p — 14s11pld basis sets are indistinguishable within
the limits of experimental accuracy and further investi-
gations using quasiparticle and the diagonal 2ph-TDA
decouplings were done with this more economical
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14s11p basis which serves as our reference basis set in
further discussions. These results are included in Table 2
along with those from other methods. The Be atom has
large static correlation effects which cannot be described
by second-order perturbation theory. It is thus necessary
to use an approach, for example, multiconfigurational
SCF (MCSCF), which can tackle the static correlation
effects, to calculate accurate resonance energies and
widths for Be. However, as argued previously, the
second-order dilated electron propagator method is
sufficiently accurate and since it permits an unequivocal
identification of the target lowest unoccupied molecular
orbital as a correlated resonant FDA [23] it is our chosen
instrument for assessing the specific basis set require-
ments for describing the resonance FDA.

We proceed by pruning diffuse orbitals which have
little importance for the Be reference wave function. The
SCF and second-order Mgller—Plesset (MP2) energies
vary by less than 0.1 mhartree from the smallest 10s6p
basis set to the 14s16p basis set and only the 14s16pld
basis set gives an additional energy lowering of
2.3 mhartree. Thus, the basis set effects we see all stem
from the description of the resonance in the dilated
electron propagator and not from insufficient descrip-
tion of the reference wave function used in the propa-
gator calculations. As seen from Table 1, the resonance
energies from the different basis sets obtained by sys-
tematic deletion in each step of the most diffuse function
starting with the saturated 14s16pld basis range from
0.48 eV for the 14sl1p basis to 1.31 eV for the 10s6p
basis. The widths vary from 0.32 eV for the 10s8p basis
to 1.59 eV for the 10s6p basis. The basis set effects are
thus large indeed and the need for understanding basis
set requirements for converged resonance energies and
widths in dilated electron propagator calculations
becomes obvious. To understand the role of primitive
basis set variations we have therefore plotted in Fig. 2
the radial probability densities from the basis sets tested.

The effects of systematic pruning of the most diffuse p
orbital in each step from 14s16p to 14s8p are shown in
Figs. 1a and 2a. We note from Table 1 and Fig. la that
with fewer than 11 p orbitals, the value for the width
[=2 Im(E)] quickly deteriorates. The most diffuse p
function in the 14s10p basis set has an exponent of
0.0044476, corresponding to a value of \/{p|rip) ~ 17 au.
From Fig. 2a we see that for the 14sup basis sets with
n <10 the radial density is qualitatively wrong for
r > 15 au, it is thus clear that these basis sets are simply
too compact to describe the density for r > 15 au.
Combining this observation with the results in Table 1,
we infer that the density for » > 15 au is important for a
converged value of the width, and if the basis set cannot
describe this density sufficiently well then it is moved to
shorter distances, distorting the extent and lifetime of the
metastable binding.

The effects of pruning the most diffuse s orbitals are
shown in Figs. 1b and 2b. The effects shown here are
clearly correlation effects, as the dilated SCF p orbital
energies do not depend on the s orbitals (the SCF ref-
erence wave function is converged with the first ten
s orbitals). As the MP2 energy is fairly insensitive to the
pruning of these s orbitals we conclude that the diffuse



448
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s orbitals describe relaxation effects in the 2s orbital
upon addition of the fifth electron. We note that there is
a combination effect of the s space and the p space in the
second-order calculations. The radial density is clearly
too low for » > 15 au for the 10s11p basis set, while for
11s11p basis set the density is qualitatively correct. This
is in confirmity with the calculated energies and widths
given in Table 1. The most diffuse 11s basis function has
an exponent of 0.026, corresponding to an expectation
value of y/(s|r?|s) = 5.4au. As can be seen in Fig. 2b,
there is a big fall in radial amplitude for » < 5 au from
10s11p and there is also a simultaneous reduction in the
dip around » = 8 au. To confirm this assertion, we show
in Figs. 1c and 2c the effect of basis set pruning all the

way down to the 10s6p basis set. Figure 1¢ shows that
the values vary a lot, and Fig. 2c illustrates how the
removal of diffuse p functions forces the FDA to be
more and more compact and consequently more and
more different from the exact second-order solution. The
radial density profile from the 10s6p basis is nodeless
and mimics a compact 2p-type orbital, leading to the
highest energy and width for resonance attributes com-
ing from this basis.

As mentioned earlier, the resonance energies and
widths obtained from the 14sllp — 14sl6pld basis
sets are indistinguishable and we therefore employed the
14s11p basis set for the dilated electron propagator
calculations using other decouplings. The resonant 0



Table 1. Second-order results for the P shape resonance in e-Be
scattering

Basis set Energy (eV) Width (eV)
14s/16p/1d 0.52 0.83
14s/16p 0.52 0.83
14s/15p 0.52 0.83
14s/14p 0.52 0.83
14s/13p 0.52 0.82
14s/12p 0.51 0.82
14s/11p 0.48 0.82
14s/10p 0.49 0.71
14s/9p 0.50 0.61
14s/8p 0.54 0.60
14s/11p 0.48 0.82
13s/11p 0.48 0.80
12s/11p 0.49 0.80
11s/11p 0.52 0.70
10s/11p 0.88 1.24
10s/11p 0.88 1.24
10s/10p 0.86 1.08
10s/9p 0.78 0.74
10s/8p 0.56 0.32
10s/7p 0.86 0.53
10s/6p 1.31 1.59

Table 2. Energy and width of the P shape resonances in e-Be
scattering

Method/reference Energy Width
(eV) (eV)
Previous calculations
Static exchange phase shift [30] 0.77 1.61
Static exchange plus polarizability 0.20 0.28
phase shift [30]
Static exchange cross section [31] 1.20 2.6
Static exchange plus polarizability 0.16 0.14
cross section [31]
Complex ASCF [32] 0.70 0.51
Singles doubles and triples complex 0.32 0.30
configuration interaction [36]
S-matrix pole (X,) [33, 34] 0.10 0.15
Exterior complex scaling [35] 0.11 0.10
Second-order dilated electron propagator 0.57 0.99
based on real SCF [11]
Biorthogonal dilated electron 0.67 0.88
propagator [18]
Second order [18] 0.64 0.60
Diagonal 2ph-TDA [18] 0.67 0.66
Present calculations (14s11p basis)
Zeroth order 0.62 1.00
Second order 0.48 0.82
Quasiparticle second order 0.61 1.00
Diagonal 2ph-TDA 0.52 0.88
Quasiparticle diagonal 2ph-TDA 0.62 1.00

trajectories from the zeroth-order (first-order correction
is zero), second-order, diagonal 2ph-TDA and their
quaisparticle decouplings using the 14s11p basis set are
plotted in Fig. 3a. The role of correlation is clearly seen.
Correlation stabilizes and, thereby, lowers both the en-
ergy and the width. The second-order decoupling offers
an energetically lower and sharper resonance compared

449

to the resonance attributes obtained from the other
decouplings. The resonance energies and widths from
these different decouplings are collected in Table 2.
The radial probability density differences between the
second-order and zeroth-/first-order decouplings, and
between the second-order and the diagonal 2ph-TDA
decouplings are plotted in Fig. 3b. These plots show that
¥? and 2P TPA have similar radial density profiles, with
>? bringing slightly higher electron density both near
and far away from the nucleus in comparison to that
from the Z?PMTPA decoupling and, thereby, lowering
both the energy and the width. The X? — X° difference
density plot shows that the correlation effects are indeed
large and that the X? decoupling places much greater
electron density in both large- and small-regions com-
pared to the X% (SCF) approximation, whereby both the
energy and the width are considerably lowered. This once
more underscores the subtle and varied role of correla-
tion effects in the formation and decay of resonances.

3.2 The °P Mg~ shape resonance

Resonant 0 trajectories from the second-order decou-
pling employing different basis sets are presented in
Fig. 4 and the resonance energies and widths extracted
from the quasistable portion of the these trajectories are
collected in Table 3. The resonance energies range from
0.09 eV for the 5s9p basis to 0.23 eV for the 8s13p basis
and the widths range from 0.03 eV for the 5s9p basis to
0.13 eV for the 4s9p basis. Once again the basis set
effects are quite large. The energy and width from the
4s9p basis are closest to the experimental results but the
addition of a single s-type function leads to a change in
resonance energy from 0.15 to 0.09 eV and a change in
width from 0.13 to 0.03 eV for the 5s9p basis. Further
augmentation with s-type functions alone makes little
difference and the results show appreciable change only
with the addition of extra p-type functions, with the
resulting energy and width finally saturating for the
8s13p basis, and we take the 8s13p basis as the saturated
basis for present calculations. In comparing this to the
size of the saturated basis set used for Be one should
remember that this basis set is contracted and that the Be
sets are uncontracted. These results further emphasize
the need for systematic augmentation of standard basis
sets with sufficiently diffuse functions for converged
resonance energies and widths. The energy and the width
of the 2P Mg~ shape resonance from the saturated 8s13p
basis using different decouplings are included in Table 4.
After saturating the diffuse p basis functions, we also
returned to fill the gap in the core p basis three p
functions with exponents 0.331, 0.165 and 0.082 between
a(p) = 0.662 and o(p) = 0.05 of the 4s9p basis [20]. The
addition of these core basis functions did not provide
any appreciable change in energy or width and they are
not discussed any further.

To understand the role of the basis set variations we
have plotted the radial probability density profiles for
the resonant root using the X> decoupling and some
selected basis sets in Fig. 5. The 4s9p, 5s9p and 8s9p
basis sets illustrate the effect of adding more diffuse s
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functions, and the 8s9p, 8sllp and 8s13p basis sets il-
lustrate the effect of adding more diffuse p functions. As
Mg is a larger atom with a greater number of electrons,
the densities peak at larger r values compared to those
for Be. The radial probability density from the 4s9p
basis is well distributed over a large area, with consid-
erable density near the nucleus as well. In comparison,
the radial density profile from the 5s9p basis has negli-
gible electron density for » < 20 au, which minimizes
interelectronic repulsion and leads to lower resonance
energy and lesser instability manifesting itself as a
smaller width cf. the arguments made earlier for e-Be
scattering. The 8s9p curve resembles 4s9p for » > 10 au,
but has no peak around 5 au and very little density for

10 15 20 25 30 35 40 45 50
r(a.u)

r < 10 au. The Hartree—Fock energies for the five basis
sets vary by less than 0.002 hartree and we therefore
conclude that the effect of s-basis functions is a corre-
lation effect, as for Be. Apparently, the basis set defi-
ciencies in s space lead to a competition between
describing nodal structure and moving density away
from small distances, and of the basis sets shown here
only the basis sets with eight s functions are sufficiently
flexible to describe both effects. We note that the ener-
gies and widths are very similar for 5s9p and 8s9p al-
though the amplitudes are very different, showing that
convergence cannot be assumed from close energy and
width values alone. We also note that the three density
amplitudes for 4s9p, 5s9p and 8s9p all are very similar
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r > 40 au. Adding more diffuse p functions to the 8s9p
basis corrects this long distance density and nodal
structure. For 8sl1p, the node has moved from about
32 au to about 37 au. For 8s13p, this node stays at
about 37 au but the basis is now sufficiently diffuse and
flexible to describe another node at about 53 au. Fur-
thermore, the 8s13p basis set has growing density at
60 au. The saturated 8s13p basis offers a balanced and
well-distributed profile peaking at larger » compared to
that from the 4s9p basis. It has small-r attributes similar
to that of the 4s9p density but with no accumulation close
to nucleus, whereby the resonance energy is higher. The
width is lower because of lesser interelectronic repulsion.
An intimate interplay between small-r and large-r be-
havior is once again seen to determine the resonance
attributes, and as for Be we see that it is essential to
include sufficiently diffuse functions in the basis set to
describe the large-r density and a sufficient number of
diffuse functions to describe the nodal structure.

The resonant 0 trajectories from various decouplings
of the dilated electron propagator using the saturated
8s13p basis are shown in Fig. 6. These results are col-
lected in Table 4 and prove once more that basis set
saturation is more important than incorporation of dif-

r(a.u)

ferent decouplings. The results from all the decouplings
are indistinguishable within the limits of experimental
resolution. The radial probability density differences
between the second-order and the diagonal 2ph-TDA
decouplings and the second-order and the zeroth-order
decouplings are plotted in Fig. 6b. The close proximity
of the radial densities from all these decouplings explains
the nearly similar results. The density profiles of Fig. 5,
however, highlight the need for a better description
of interelectronic repulsions and the incorporation of
higher-order correlated decouplings therefore becomes
most desirable.

4 Concluding remarks

The use of the dilated electron propagator method based
on the bivariational SCF employing different primitive
bases has shown that the description of resonances is
extremely sensitive to the choice of primitive basis sets
employed and that the effect of this sensitivity on the
resonance attributes can be very large. The basis sets
with a coordinate space span which can accomodate the
competing pulls of providing accumulation of electron



452

Fig. 4. 0 trajectories from sec- 0.00 ¢ 2 —0.001 [ b) 0.00
ond-order decoupling of the 02 | °)
dilated electron propagator ’ —oo0s |- moory
using the contracted GTO bases 3 oot P Mg 3 |Pmg 3 ool P Mg
4s9p-8s9p (a—e) and the 8s10p- T -00s | 37 decoupling. @ o | & decoupling. o [ 2 decoupling.
8s13p (f-i) bases. The conven- ~ — ~ T = oozl
tions of Fig. 1 apply with E ool E E
0 = 0.0 on the real line and 0 ool -0.016 - _0.04
increments in steps of 0.01 rad. T L asgp 559p 6s9p
The optimal o value is 0.75 for -0.12 ! ! -0.02¢ ‘ : ‘ -0.05 T
the 4s9p basis, 1.00 for the 5s9p 0.100 o.;ng © (é{;o 0.160 0.0872 o.ozm‘_J (tgjeg 0.0876 01014 0'11?0(297(E) g.\v/oas
basis, 1.05 for the 6s9p-8s9p
bases, 1.02 for the 8s10p basis,
1.03 for the 8sl1p basis and
1.025 for the 8s12p and 8s13p 0.00 d) 000 e 000 )
bases 001 | -0.01 oo
N 001 r2p pmg S Pmg S 00zr, J ]
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.10 1887TP,_, s 0.1y L 8512p : 0.4y L8P, ‘
0.196 0.200 0.204 0214 0.219 0.224 0.222 0.227 0.232
Re (E) eV Re (E) eV Re (E) eV
Table 3. Second-order results for the P shape resonance in e-Mg Table 4. Energy and width of the ?P shape resonances in e-Mg
scattering scattering
Basis set Energy (eV) Width (eV) Method/reference Energy Width
(eV) (eV)
4s/9p 0.15 0.13
5s/9p 0.09 0.03 Experiment [37] 0.15 0.13
6s/9p 0.10 0.04 Provi Culati
75/9p 010 0.04 revious calculations ‘
85/9 0'10 0‘04 Static exchange phase shift [30/31] 0.46/0.46  1.37/1.53
85/18 0.16 0.06 Static exchange plus polarizability 0.16/0.14  0.24/0.24
P ' : phase shift [30/31]
8s/11p 0.21 0.08 : ‘
Static exchange cross section [31] 0.91 2.30
8s/12p 0.22 0.10 : on |5/
Static exchange plus polarizability 0.19 0.30
8s/13p 0.23 0.10 :
cross section [31]
Configuration interaction [38] 0.20 0.23
S-matrix pole (X,) [33, 34] 0.08 0.17
. L. . Exterior complex scaling [35] 0.15 0.13
density near the nucleus to assist in resonance fqrmatlon Complex ASCF [39] 0.51 0.54
and also away frqm the nucleus to prov1dt; for’ its depay Dilated electron propagator based on  0.14 0.13
offer the most satisfactory results. A detailed investiga- real SCF [20]
tion of basis set effects on resonance attributes was Second order [18] 0.15 0.13
attempted for the first time and we studied the effects of Diagonal 2ph-TDA [18] 0.15 0.13
2P Be™ and ’P Mg~ shape resonances in some detail.  Present calculations (8s13p basis)
The results offered here clearly indicate that the basis set Zeroth order 0.25 0.10
saturation should precede the incorporation of higher- Second order 0.23 0.10
order decouplings. The diagonal 2ph-TDA decoupling 8PaS‘parlt‘2le}’]s_‘;%’Rd order 833 8}8
: : : iagonal 2ph- . .
sums the diagonal ring and ladder diagrams to all orders Quasiparticle diagonal 2ph-TDA 024 0.10

but does not offer any improvement over the second-




Fig. 5. Radial probability
density plots for the 2P Mg~
resonant FDA from the second-
order decoupling using 4s9p,
589p, 8s9p, 8sl1p and 8s13p
basis sets

Fig. 6. a 0 trajectories for the
’P Be™ resonant FDA from
different decouplings using the
8s13p basis. The conventions of
Fig. 4 apply. The optimal

a value is 1.025 for 22, 1.035 for
x2hTPA 11,04 for =] and 1.045
for Zfl”h’TDA and % decou-
plings. b Difference in radial
probability density obtained
using the 8513]])) basis set and X2,
%0 and T2 TPA decouplings

order results. As seen in the case of the e-Mg 2P shape
resonance, the results obtained with smaller bases may
serendipitously match experimental results which vanish

Im (E) eV

4nr2/\gfz/

0.20

0.18

0.15

0.13

0.10

iy

0.08

0.05

0.03

0.00

-0.03

-0.13

453

L 4s9p

2F2’ Mg shape resonance.
X decoupling.
8s13p

5s9p

8s9p

8s11p

’P Mg~ shape resonance
8s13p basis

20 25 30 35 40 45 50 55 60

0.222

0.0030

0.227

0.237 0.242 0.247

Re (E) eV

0.232

0.0010 +

0.0000

-0.0010

b)

2 2ph-TDA

r-x

2P Mg~ shape resonance

8513p basis

-0.0020
0

5 10 15

with basis set saturation. The present investigation,
therefore, underscores the need for using saturated bases
with sufficient flexibility to accumulate electron density
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both close to and away from the nucleus and for higher-
order decouplings such as the third-order and the partial
fourth-order or MCSCF-type approaches to provide
adequate incorporation of correlated interelectronic
repulsions. Effort along these lines is underway in our

group.
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